Negative Effects of CO₂ in the Feed Stream on the Catalytic Performance of Precipitated Iron-Based Catalysts for Fischer–Tropsch Synthesis

Dong Hyun Chun · Ho-Tae Lee · Jung-Il Yang · Hak-Joo Kim · Jung Hoon Yang · Ji Chan Park · Byeong-Kwon Kim · Heon Jung

Received: 21 December 2011/Accepted: 22 February 2012/Published online: 17 March 2012 © Springer Science+Business Media, LLC 2012

Abstract Fischer–Tropsch synthesis was carried out over precipitated iron-based catalysts with different amounts of CO_2 in the feed stream while maintaining both total reaction pressure (1.5 MPa) and partial pressure of $H_2 + CO$ (0.75 MPa) using an inert balance gas, N_2 . The CO_2 in the feed stream decreased the rate of hydrocarbon formation, but it had no significant influence on the carbon number distribution of hydrocarbons. The CO_2 in the feed stream also suppressed CO_2 formation, decreasing both CO conversion and CO_2 selectivity. We attribute the decreased reaction rate to the partial competition in the adsorption behavior between CO and CO_2 as revealed in the temperature-programmed desorption.

Keywords Indirect coal liquefaction · Fischer–Tropsch synthesis · Precipitated iron-based catalysts · Effects of CO₂ · Adsorption of CO and CO₂

1 Introduction

Fischer–Tropsch synthesis (FTS) has received much attention as an essential part of the indirect coal liquefaction (ICL)

Electronic supplementary material The online version of this article (doi:10.1007/s10562-012-0789-1) contains supplementary material, which is available to authorized users.

D. H. Chun · H.-T. Lee · J.-I. Yang · H.-J. Kim · J. H. Yang · J. C. Park · B.-K. Kim · H. Jung (☒) Clean Fuel Department, Korea Institute of Energy Research, 71-2 Jang-Dong, Yuseong-Gu, Daejeon 305-343, Republic of Korea e-mail: jungh@kier.re.kr

D. H. Chun

e-mail: cdhsl@kier.re.kr

process. In the ICL process, iron-based catalysts are highly promising for the FTS due to their potential activity for a water-gas shift (WGS) reaction as well as their high activity and low cost, as coal gasification produces a synthesis gas with a low H_2/CO ratio (<1.0) [1-4]. CO_2 generation inevitably accompanies the production of a synthesis gas via coal gasification, limiting the net efficiency of carbon utilization in the whole ICL process [2-4]. In general, the CO₂ has been separated from the feed stream, but it is potentially desirable to use the raw feed stream without an extra CO₂ separation process from the view point of heat/energy efficiency and facility simplification. Therefore, it is worth investigating the effects of CO₂ in the feed stream on the catalytic performance of industrial iron-based catalysts for the FTS in a synthesis gas with a low H_2/CO ratio (<1.0).

Several researchers have reported the FTS over ironbased catalysts in a CO₂-containing synthesis gas [5–13], but previous works on the FTS in a CO₂-containing synthesis gas with a low H_2/CO ratio (≤ 1.0) are not abundant. Liu et al. [5] investigated the effects of co-feeding CO₂ on the Fe-Mn FTS catalysts in a synthesis gas with a low H₂/CO ratio (=1.0) by varying added CO₂ partial pressure in the feed stream at fixed total pressure and at fixed partial pressure of $H_2 + CO$, respectively. In other words, the partial pressure of H₂ + CO decreases as the partial pressure of CO₂ increases at fixed total pressure, and the total pressure increases with increased CO₂ partial pressure at fixed partial pressure of $H_2 + CO$. In their work, they found that the added CO₂ partial pressure did not strongly influence the catalytic performance in terms of CO conversion and hydrocarbon selectivity during the FTS at 320 °C and fixed partial pressure of H₂ + CO. In contrast, at 260 °C and fixed total pressure, the CO conversion gradually decreased with the increased amount of CO₂ co-feeding, but the hydrocarbon selectivity was not reported. Yates and Satterfield [6] also reported that the CO_2 is relatively inert during the FTS over fused magnetite catalysts in a synthesis gas with $H_2/CO = 0.67-0.72$ at fixed partial pressure of $H_2 + CO$. In the cases other than those by Liu et al. [5] and Yates and Scatterfield [6], most researchers either carried out the FTS in a synthesis gas with a high H_2/CO ratio (≥ 2.0) which can simulate methane reforming or H_2 -assisted biomass gasification, or they focused their attention on a comparison between the CO_2 hydrogenation and the FTS [7–11]. Furthermore, some conclusions are still controversial. It is generally accepted that the different conclusions result from the difference in the reaction condition/system and catalyst formulation.

In this study, we investigated the effects of CO_2 in the feed stream on the catalytic performance of industrially important $Fe/Cu/K/SiO_2$ catalysts in a low temperature FTS condition (<280 °C) with a low H_2/CO ratio (=1.0). Different amounts of CO_2 were added into the feed stream, carefully maintaining both total reaction pressure and partial pressure of H_2 + CO using an inert balance gas, N_2 , to exclude the potential effects of total pressure and H_2 + CO partial pressure. We focused our particular attention on the effects of CO_2 on the catalytic activity and selectivity of the iron-based catalysts and the adsorption behavior of CO over the catalysts.

2 Experimental

The catalysts used in this study were prepared through a combination of a co-precipitation technique and a spraydrying method. In brief, a sodium carbonate solution was added to a solution containing both Fe(NO₃)₃ and $Cu(NO_3)_2$ in the desired ratio at 80 ± 1 °C until the pH reached 8.0 ± 0.1 . The precipitate slurry was filtered, washed with distilled water, and subsequently re-slurried in distilled water. After completing the washing process, the required amount of K₂CO₃ solution and colloidal suspension of SiO₂ were added to the precipitate slurry, and the final mixture was spray-dried (inlet: 200 °C; outlet: 95 °C). Then, the spray-dried sample was calcined at 400 °C for 8 h. The chemical composition of the catalysts as analyzed by means of X-ray fluorescence spectroscopy (Rigaku model ZSX Primus II) was 100Fe/5.33Cu/5.23 K/17.4SiO₂ in part per weight. The Brunauer-Emmett-Teller (BET) surface area, the single point pore volume, and the average pore diameter were 120 m²/g, 0.320 cm³/g, and 10.7 nm, respectively. The calcined catalysts were pressed into pellets and then crushed and sieved to obtain 300-600 µm particles for a test in a fixed-bed reactor.

The FTS was carried out in a fixed-bed reactor composed of stainless steel (5 mm i.d. and 180 mm length).

The catalysts (0.8 g) were diluted with glass beads (1.6 g; 425-600 μm) and then charged into the fixed-bed reactor. The catalysts were activated in situ with $H_2 + CO$ (H_2 / $CO = 1.0, 3.0 \text{ NL/g}_{(cat)} \cdot h)$ at 280 °C and ambient pressure for 20 h. After the activation treatment, the FTS was performed at 275 °C and 1.5 MPa using a synthesis gas (H₂/ CO = 1.0) with different CO_2 content. The flow rate and partial pressure of H₂ + CO was carefully maintained at 3.0 NL/g_(cat)·h and 50% of the total reaction pressure, respectively. The remainder was filled with N_2 and CO_2 , and the ratio of CO_2 to N_2 was adjusted: $CO_2/N_2 = 0/100$, 24/76, 50/50, 100/0. The composition of the outlet gases was analyzed using an online gas chromatograph (GC; Agilent, 3000A Micro-GC) equipped with molecular sieve and Plot O columns. The flow rates of the outlet gases were measured by means of a wet-gas flow meter. The composition of wax and liquid products was analyzed by means of an offline GC (Agilent, 6890N) with a simulated distillation method (ASTM D2887) [14].

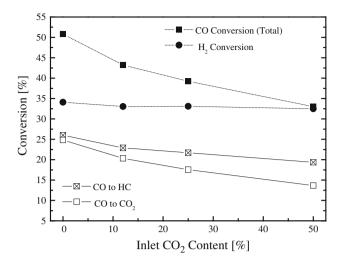
The influence of CO₂ on the adsorption behavior of CO was analyzed by means of temperature-programmed desorption (TPD) using CO and/or CO₂ as adsorbents. In order to simulate the adsorption behavior at the pseudosteady-state, the catalysts in the working condition were used for the TPD. The catalysts in the working condition were prepared by activating the fresh catalysts and subsequently exposing the activated catalysts to the reaction environment ($CO_2/N_2 = 0/100$) using the same process described above. After exposing the catalysts to the reaction environment for 114 h, the reactor was purged with N₂ (purity: 99.999%) for 6 h, cooled to the room temperature, and depressurized to 0.3 MPa. Then, the reactor was sealed and transferred to a glove box in a N2 atmosphere (purity: 99.999%). After carefully withdrawing the catalysts from the reactor, the catalysts were washed with hexane to remove residual liquid/solid hydrocarbons from the catalysts. Then, the catalysts (about 200 mg) were loaded into the sample cell, and the sample cell was sealed and transferred to the equipment for the TPD. The catalysts were purged with a carrier gas, He, at 280 °C for 20 h to remove potential impurities remaining on the surface of the catalysts. After cooling the catalysts to 50 °C, CO or CO₂ was introduced into the sample cell for 30 min and this was followed by purging with the carrier gas for 30 min to remove weakly adsorbed species. The TPD was carried out up to 280 °C in the flow of carrier gas at a heating rate of 6 °C/min, and the temperature was then held at the maximum temperature for 40 min. The amount of desorbed gases was measured by means of a thermal conductivity detector (TCD). The amount of CO and CO₂ desorption was calculated separately by performing the TPD with and without using a CO₂ removal trap (Ascarite, 223921 Aldrich). For all measurements, we obtained at least two

D. H. Chun et al.

TPD profiles to check the reproducibility of the results and confirmed that the TPD profiles showed reasonable reproducibility under all measurement conditions (see Supplementary Information for details).

3 Results and Discussions

The catalytic performance with different CO₂ content was evaluated at 275 °C. In addition to the unreacted CO and H₂, CH₄, C₂–C₄ hydrocarbons, and CO₂ were detected in the outlet gases. Liquid hydrocarbons and H₂O were obtained in the cold trap (1 °C), and solid hydrocarbons were also obtained in the hot trap (240 °C). The amount of effluent CO₂ in the outlet gases was larger than the amount of CO₂ added in the feed stream for all reaction conditions, indicating that the formation of hydrocarbons via the FTS (Eqs. 1, 2) proceeds accompanying the formation of CO₂ via WGS (Eq. 3), as follows:


$$nCO + (2n+1)H_2 \leftrightarrow C_nH_{2n+2} + nH_2O \ (n \ge 1),$$
 (1)

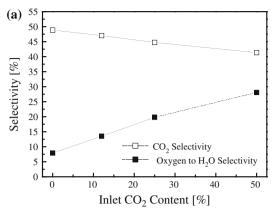
$$nCO + 2nH_2 \leftrightarrow C_nH_{2n} + nH_2O \ (n \ge 2),$$
 (2)

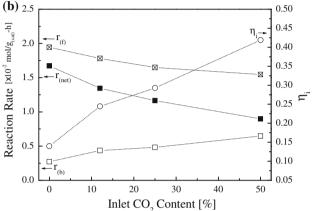
$$CO + H_2O \leftrightarrow CO_2 + H_2.$$
 (3)

The CO conversion gradually decreased with increased time and then reached a pseudo-steady-state after about 90 h of reaction (see supplementary information for details). Therefore, we assumed that the catalytic performance during 90–204 h of reaction is representative of the performance of the catalysts used in this study.

Figure 1 shows the overall CO conversion and the overall H₂ conversion during 90-204 h of reaction as a function of inlet CO₂ content. In this graph, 0% of inlet CO₂ content means that 50% of total inlet gases were filled with N_2 . As the inlet CO_2 content increased, the N_2 was replaced with the equivalent amount of CO₂, maintaining the total reaction pressure at 1.5 MPa and the partial pressure of $H_2 + CO$ at 0.75 MPa, respectively. The CO conversion and the H₂ conversion showed obviously different trends with increased inlet CO₂ content. While the CO conversion gradually decreased as the inlet CO₂ content increased, the H₂ conversion showed no considerable difference with increased inlet CO₂ content. The total CO conversion can be divided into the CO conversion to hydrocarbons (CO to HC) and the CO conversion to CO₂ (CO to CO₂) as shown in Fig. 1. The CO to HC and the CO to CO₂ reflect the rate of hydrocarbon formation and the rate of CO₂ formation, respectively. Both the CO to HC and the CO to CO₂ decreased with increased inlet CO₂ content, which implies that the CO₂ in the feed stream has a negative effect both on the formation of hydrocarbons via the FTS and on the formation of CO₂ via WGS. The CO to CO₂ showed a more pronounced decline with increased

Fig. 1 The overall CO conversion and the overall H_2 conversion during 90–204 h of reaction in the Fischer–Tropsch synthesis as a function of inlet CO_2 content. In the case of CO conversion, the CO conversion to hydrocarbons (CO to HC) and the CO conversion to CO_2 (CO to CO_2), which respectively reflect the rate of hydrocarbon formation and the rate of CO_2 formation, are inserted in addition to the total CO conversion


inlet CO_2 content than the CO to HC, indicating that the CO_2 formation is more strongly affected by the CO_2 in the feed stream compared to the hydrocarbon formation.

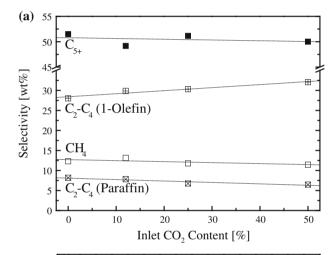

The overall CO_2 selectivity and the overall oxygen to H_2O selectivity during the 90–204 h of reaction are given in Fig. 2a as a function of inlet CO_2 content. The oxygen to H_2O selectivity is defined as the fraction of the oxygen in the converted CO that appears as H_2O . The CO_2 selectivity monotonously decreased as the CO_2 content in the feed stream increased, and the oxygen to H_2O selectivity showed the opposite trend to the CO_2 selectivity. The decreased CO_2 selectivity and the increased oxygen to H_2O selectivity are potentially attributed to the suppression of CO_2 formation via WGS (Eq. 3) or the promotion of reverse WGS (reverse of Eq. 3) as these reactions approach the equilibrium state with increased inlet CO_2 content. The approach to the equilibrium state in the WGS reaction can be estimated by a parameter, η_i , as follows:

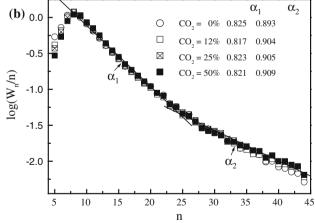
$$\eta_{\rm i} = \frac{1}{K_{\rm p}} \frac{P_{\rm CO_2} P_{\rm H_2}}{P_{\rm CO} P_{\rm H_2O}},\tag{4}$$

where K_p and P_j are the equilibrium constant for WGS and the partial pressure of reaction species j, respectively. As the WGS reaction approaches the equilibrium state, the value of η_i increases from 0 to 1. As shown in Fig. 2b, the η_i showed higher value at the higher inlet CO₂ content, indicating that the WGS reaction approaches the equilibrium state as the inlet CO₂ content increased. But, considering that the η_i was much lower than the equilibrium value, 1.0, at all reaction conditions, the occurrence of WGS is supposed to be far from

Fig. 2 a The overall CO_2 selectivity and the overall oxygen to H_2O selectivity during 90–204 h of reaction in the Fischer–Tropsch synthesis as a function of inlet CO_2 content. **b** The equilibrium parameter for the WGS reaction (η_i) , the net rate of CO_2 formation $(r_{(net)})$, forward rate of WGS $(r_{(f)})$, and the reverse rate of WGS $(r_{(b)})$ during 90–204 h of reaction in the Fischer–Tropsch synthesis as a function of inlet CO_2 content

the equilibrium state under the FTS conditions. This corresponded well with the previous works by Krishnamoorthy et al. [7] and Pour et al. [15]. The approach to the equilibrium state can kinetically influence the WGS reaction. According to the previous studies [7, 15, 16], the net rate of CO_2 formation via WGS can be expressed as a function of the forward rate of WGS and the equilibrium parameter, η_i , as follows:


$$r_{(\text{net})} = r_{(f)} - r_{(b)} = r_{(f)} \left(1 - \frac{1}{K_p} \frac{P_{\text{CO}_2} P_{\text{H}_2}}{P_{\text{CO}} P_{\text{H}_2\text{O}}} \right)$$

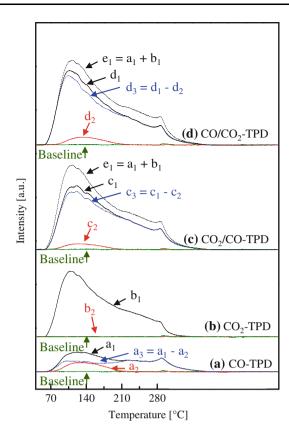

$$= r_{(f)} (1 - \eta_i), \qquad (5)$$

where $r_{(net)}$ is the net rate of CO₂ formation, $r_{(f)}$ is the forward rate of WGS, and $r_{(b)}$ is the reverse rate of WGS. Thus, the forward rate of WGS can be calculated from the net rate of CO₂ formation divided by $(1-\eta_i)$. The net rate of CO₂ formation, the forward rate of WGS, and the reverse rate of WGS are also presented in Fig. 2b. The net rate of CO₂ formation monotonously decreased with increased inlet CO₂ content, which well corresponds to the

decreased CO to CO₂ in Fig. 1. The forward rate of WGS also decreased with increased inlet CO₂ content, but it decreased less steeply than the net rate of CO₂ formation, which means that the approach to the equilibrium state promotes the conversion of CO₂ to CO via the reverse WGS reaction (reverse of Eq. 3). Consequently, the decreased rate of forward WGS and the increased rate of reverse WGS may contribute to the decreased CO₂ selectivity, the increased oxygen to H₂O selectivity (Fig. 2a), and no significant difference in the H₂ conversion (Fig. 1).

The effects of CO_2 on the hydrocarbon distribution are shown in Fig. 3. As shown in Fig. 3a, the selectivity of paraffinic hydrocarbons in gaseous phase (C_1 – C_4) showed a decreasing trend as the inlet CO_2 content increased, but that of 1-olefins in C_2 – C_4 hydrocarbons increased with increased inlet CO_2 content. The increased fraction of 1-olefins in gaseous hydrocarbons is potentially attributed

Fig. 3 a The hydrocarbon distribution during 90–204 h of reaction in the Fischer–Tropsch synthesis as a function of inlet CO_2 content: CH_4 and C_2 – C_4 (1-olefin), C_2 – C_4 (Paraffin), and C_{5+} hydrocarbons. **b** The Anderson–Schulz–Flory distribution of liquid hydrocarbons and the chain growth probability (α_1 from C_8 to C_{24} and α_2 from C_{24} and C_{44}) per each inlet CO_2 content during 90–204 h of reaction in the Fischer–Tropsch synthesis


D. H. Chun et al.

to the decreased H₂/CO ratio with increased inlet CO₂ content. As described above, the decreased rate of forward WGS and the increased rate of reverse WGS with increased inlet CO₂ content can keep the reaction environment with a lower H₂/CO ratio, possibly suppressing the secondary hydrogenation of hydrocarbon chains to form paraffinic hydrocarbons. The overall selectivity of C₅₊ hydrocarbons showed an even trend with increased CO₂ content as the increased selectivity of 1-olefins in C2-C4 hydrocarbons offsets the decreased selectivity of paraffinic hydrocarbons in gaseous phase (C_1-C_4) . Therefore, it is suggested that the presence of CO₂ in the feed stream does not significantly influence the chain growth of hydrocarbons during FTS. The Anderson-Schulz-Flory (ASF) distribution of the liquid products is also presented in Fig. 3b. The ASF distribution is expressed by the following equation (Eq. 6) [4, 17]:

$$\log(W_n/n) = \log\alpha \cdot n + \log(\ln^2\alpha),\tag{6}$$

where W_n is the weight fraction of hydrocarbons with carbon number n, and α is the chain growth probability of the hydrocarbons. Using this equation, the chain growth probability, α , can be directly derived by calculating the slope of the graph; a gentler slope indicates a higher value of α . The ASF distribution for each reaction condition can be well fitted by two linear regressions; in other words two values of α (α_1 from C_8 to C_{24} and α_2 from C_{24} and C_{44}) can be derived from the graph. An ASF distribution with these two α types has been reported as typical behavior of ironbased catalysts promoted by potassium, as the potassium is not homogenously distributed on the catalyst surface. Potassium-lean sites possibly generate a low α value (α_1), and potassium-rich sites generate a high α value (α_2) [17, 18]. As given in Fig. 3b, the ASF distribution of the liquid products showed almost the same α values (α_1 and α_2) under all reaction conditions, which confirms the negligible effects of CO₂ on the chain growth of hydrocarbons during the FTS. This is strongly supported by the previous works by Davis and co-workers [12, 13] which suggest that different surface chemical species are involved for chain initiation and for chain propagation. The CO₂ in the feed stream is supposed to be involved with chain initiation decreasing the rate of hydrocarbon formation (Fig. 1), but it may not be involved with chain propagation without influencing the carbon number distribution of hydrocarbons (Fig. 3).

The effects of CO₂ in the feed stream on catalytic performance can be closely related to its effects on the adsorption behavior of CO over the catalysts. TPD is often used as an effective tool to investigate the adsorption behavior of reactant gases in the FTS [19–21]. Figure 4 shows the TPD profiles of different adsorption species with and without using a CO₂ removal trap: single adsorption of

Fig. 4 The TPD profiles of different adsorption species: single adsorption of (a_1, a_2) CO and (b_1, b_2) CO₂ and sequential adsorption of (c_1, c_2) CO₂ \rightarrow CO and (d_1, d_2) CO \rightarrow CO₂ (a_2, b_2, c_2, d_2) with and (a_1, b_1, c_1, d_1) without using a CO₂ removal trap

- (a) CO and (b) CO_2 and sequential adsorption of (c) $CO_2 \rightarrow CO$ and (d) $CO \rightarrow CO_2$. The noteworthy detail is as follows:
 - Most of the strongly adsorbed CO desorbed as CO₂ during the desorption process when CO was used as an adsorbent (CO-TPD, CO2/CO-TPD, and CO/CO2-TPD). The TPD profiles without a CO₂ removal trap (Fig. $4a_1$, c_1 , d_1) showed two groups of desorption peaks: one at the low temperature corresponding to the desorption of weakly adsorbed species and the other at the high temperature corresponding to that of strongly adsorbed species [19-21]. Interestingly, the TPD profiles with a CO₂ removal trap (Fig. 4a₂, c₂, d₂) showed a major desorption peak only at low temperature, indicating that most of the strongly adsorbed CO desorbed as CO₂ at high temperature, possibly carrying the lattice oxygen, or via dissociation of CO. In contrast, when only CO₂ was used as an adsorbent, the TPD profiles with a CO₂ removal trap (Fig. 4b₂) were almost identical to the baseline, implying that the CO₂ desorbed as it was adsorbed, probably because the CO₂ is too stable to be converted to CO in the TPD condition.

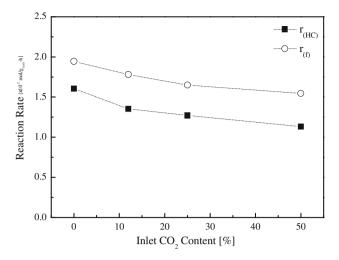


Table 1 Quantitative analyses of CO and CO₂ desorption in the TPD profiles of different adsorption species

	Adsorption gas	Amount of desorption (μmol/g)		
		as CO	as CO ₂	Total
CO-TPD	СО	a ₂ 4.09	a ₃ 11.0	15.1
CO ₂ -TPD	CO_2	_	b ₁ 35.9	35.9
CO ₂ /CO-TPD	$CO_2 \rightarrow CO$	$c_2 \ 2.50$	c ₃ 36.9	39.4
CO/CO ₂ -TPD	$CO \rightarrow CO_2$	$d_2 \ 3.28$	d ₃ 38.4	41.7

(ii) There was partial competition in the adsorption behavior between CO and CO2. Both CO2/CO-TPD and CO/CO₂-TPD profiles without a CO₂ removal trap (Fig. $4c_1$, d_1) showed larger peaks than the CO-TPD (Fig. $4a_1$) and the CO₂-TPD (Fig. $4b_1$), but it was smaller than the summation of CO-TPD and CO₂-TPD (Fig. $4e_1$). The amount of CO and CO₂ desorption is summarized in Table 1. In the case of CO-TPD, CO₂/ CO-TPD, and CO/CO₂-TPD, the desorption profiles of CO_2 (Fig. $4a_3$, c_3 , d_3) were obtained by subtracting the desorption profiles with a CO₂ removal trap (Fig. 4a₂, c₂, d₂) from those without a CO₂ removal trap (Fig. $4a_1$, c_1 , d_1). The amount of CO and CO₂ desorption in the CO₂/CO-TPD (CO: 2.50 µmol/g, CO₂: 36.9 µmol/g) and that in the CO/CO₂-TPD (CO: 3.28 µmol/g, CO₂: 38.4 µmol/g) was smaller than the summation of that in the CO-TPD and CO₂-TPD (CO: $4.09 \mu \text{mol/g}$, CO_2 : $11.0 + 35.9 = 46.9 \mu \text{mol/g}$), which means that there is partial competition in the adsorption behavior between CO and CO₂.

The partial competition in the adsorption behavior between CO and CO₂ suggests that the CO and CO₂ are mainly adsorbed on the different sites, respectively. According to the previous study by Amenomiya and Pleizier [19], the CO₂ molecules are mainly adsorbed on the alkali surface but most of the CO molecules are adsorbed on the iron metal surface. Also, the partial competition between the adsorption of CO and CO2 suggests that a certain fraction of iron surface, which mainly adsorbs the CO as active sites, is occupied by the CO₂. This is strongly supported by the previous study Dry et al. [22] which suggests that the CO₂ molecules are mainly adsorbed on the alkali promoter surface but in part adsorbed on the metallic iron. Consequently, the CO₂ in the feed stream suppresses both the hydrocarbon formation via the FTS and the CO₂ formation via forward WGS. Figure 5 shows the comparison of the hydrocarbon formation rate with the forward rate of WGS during 90-204 h of reaction as a function of inlet CO₂ content. The rate of hydrocarbon formation and the forward rate of WGS declined with increased inlet CO2 content, displaying slopes almost

Fig. 5 The comparison of the hydrocarbon formation rate $(r_{(HC)})$ with the forward rate of WGS $(r_{(f)})$ during 90–204 h of reaction in the Fischer–Tropsch synthesis as a function of inlet CO₂ content

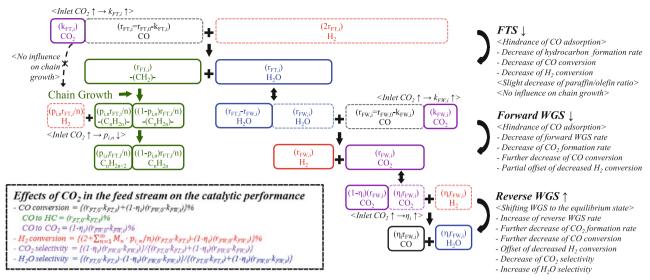
identical with each other. Therefore, it is suggested that the CO₂ in the feed stream almost equally suppresses the hydrocarbon formation via the FTS and the CO₂ formation via forward WGS. In other words, the number of CO₂ molecules which occupy the CO adsorption sites for the FTS may be almost equal to that of CO₂ molecules which occupy the CO adsorption sites for WGS. But, as the CO₂ in the feed stream promotes the consumption of CO₂ via reverse WGS (Fig. 2b), the overall rate of CO₂ formation (CO to CO₂) declined more pronouncedly with increased inlet CO₂ content than the overall rate of hydrocarbon formation (CO to HC) as shown in Fig. 1.

The effects of CO_2 in the feed stream on the catalytic performance of iron-based catalysts for the FTS can be summarized by Scheme 1, which is based on the experimental results obtained in this study. In Scheme 1, we presumed that the overall reaction at the steady state can be divided into three steps: the FTS step, the forward WGS step, and the reverse WGS step. The influence of CO_2 in the feed stream on the catalytic performance can be simply expressed as three variables, η_i , $k_{\rm FT,i}$, and $k_{\rm FW,i}$, which obviously have positive dependence on the inlet CO_2 content, and two constants, $r_{\rm FT,0}$ and $r_{\rm FW,0}$, as follows:

CO conversion =
$$\{ (r_{\text{FT},0} - k_{\text{FT},i}) + (1 - \eta_i)(r_{\text{FW},0} - k_{\text{FW},i}) \} \%$$
, (7)

CO to HC =
$$(r_{\text{FT},0} - k_{\text{FT},i})\%$$
, (7 – 1)

CO to
$$CO_2 = (1 - \eta_i)(r_{FW,0} - k_{FW,i}) \%$$
, (7 – 2)


CO₂ selectivity

$$= \frac{(1 - \eta_{\rm i})(r_{\rm FW,0} - k_{\rm FW,i})}{(r_{\rm FT,0} - k_{\rm FT,i}) + (1 - \eta_{\rm i})(r_{\rm FW,0} - k_{\rm FW,i})},$$
(8)

D. H. Chun et al.

<The FTS over iron-based catalysts with presence of CO₂ in the feed stream>

- r_{FT,F}. Number of CO molecules consumed in the chain initiation reaction of the FTS per 100 CO molecules when the inlet CO₂ content is i%.
- $r_{FW,i}$: Number of CO molecules consumed in the forward WGS reaction per 100 CO molecules when the inlet CO₂ content is i%.
- $k_{FT,i}$. Number of CO_2 molecules occupying the FTS sites per 100 CO molecules when the inlet CO_2 content is i%, which has positive dependence on i $(k_{FT,0}=0)$.
- $k_{FW,i}$. Number of CO_2 molecules occupying the WGS sites per 100 CO molecules when the inlet CO_2 content is i%, which has positive dependence on i ($k_{FW,0}=0$; In this study, $k_{FW,i}\approx k_{FT,i}$).
- $\blacksquare \eta_i$. Equilibrium parameter of WGS when the inlet CO_2 content is i%, which has positive dependence on i.
- 🖣 $p_{l,n}$. Fraction of paraffinic hydrocarbons in the hydrocarbons with carbon number n when the inlet CO2 content is i%, which has negative dependence on i.
- M_n : Molecular fraction of hydrocarbons with carbon number n.

Scheme 1 Schematic summary: The effects of CO2 in the feed stream on the catalytic performance of iron-based catalysts for the FTS

Oxygen to H₂O selectivity

$$=\frac{(r_{\text{FT},0}-k_{\text{FT},i})-(1-\eta_{i})(r_{\text{FW},0}-k_{\text{FW},i})}{(r_{\text{FT},0}-k_{\text{FT},i})+(1-\eta_{i})(r_{\text{FW},0}-k_{\text{FW},i})},$$
(9)

where $r_{\rm FT,0}$ and $r_{\rm FW,0}$ are the number of CO molecules consumed in the FTS and forward WGS, respectively, per 100 CO molecules with the absence of CO₂ in the feed stream, and $k_{\rm FT,i}$ and $k_{\rm FW,i}$ are the number of CO₂ molecules occupying the FTS sites and the WGS sites, respectively, per 100 CO molecules when the inlet CO₂ content is i%. In case of the H₂ conversion, it needs another variable, $p_{\rm i,n}$, which has negative dependence on the inlet CO₂ content, as follows:

$$H_{2} \text{ conversion } = \left\{ \left(2 + \sum_{n=1}^{\infty} M_{n} \frac{p_{i,n}}{n} \right) (r_{FT,0} - k_{FT,i}) - (1 - \eta_{i}) (r_{FW,0} - k_{FW,i}) \right\} \%, \tag{10}$$

where $p_{i,n}$ is the fraction of paraffinic hydrocarbons in the hydrocarbons with carbon number n when the inlet CO_2 content is i%, and M_n is the molecular fraction of hydrocarbons with carbon number n. At the FTS step, the number of CO molecules adsorbed on the FTS sites decreases as a certain fraction of FTS sites is occupied by the CO_2 molecules, resulting in the decreased hydrocarbon formation rate (Fig. 5). Correspondingly, the CO conversion and the H_2 conversion decrease. In the case of H_2 conversion, it suffers

another slight decrease due to the decreased fraction of paraffinic hydrocarbons with increased inlet CO₂ content. However, once the hydrocarbon chains are initiated, their growth is not supposed to be influenced by the CO₂ molecules (Fig. 3), probably because different surface chemical species are involved for chain initiation and for chain propagation as Davis and co-workers [12, 13] suggested. At the forward WGS step, the CO₂ molecules also occupy the CO adsorption sites for forward WGS, and, as a result the rate of forward WGS decreases, accompanying the further decrease of CO conversion and the partial offset of decreased H₂ conversion. At the reverse WGS step, the CO₂ molecules are much more favorably consumed to produce CO and H₂O as the WGS reaction approaches the equilibrium state due to the CO2 in the feed stream. As a result, the CO conversion and the CO₂ formation rate decreases further and further (Fig. 1). Also, this step slightly decreases the CO₂ selectivity and significantly increases the oxygen to H2O selectivity as shown in Fig. 2. But, in the case of H₂ conversion, it is not significantly affected by the CO₂ in the feed stream as the increased rate of reverse WGS offsets the decreased H₂ conversion.

4 Conclusion

The presence of CO₂ in the feed stream negatively influences the catalytic performance of iron-based FTS catalysts

and the adsorption behavior of CO over the catalysts. Our main results are summarized as follows:

- The CO₂ in the feed stream lowered both the rate of hydrocarbon formation and the rate of CO₂ formation. In comparison with the rate of hydrocarbon formation, the rate of CO₂ formation showed a more pronounced decline with increased inlet CO₂ content, possibly due to the additional influence induced by the occurrence of reverse WGS.
- 2. While the CO₂ in the feed stream slightly increased the fraction of 1-olefins in C₂–C₄ hydrocarbons, it did not significantly influence the carbon number distribution of hydrocarbons in both gaseous phase and liquid phase.
- The temperature-programmed desorption showed partial competition in the adsorption behavior between CO and CO₂, possibly contributing to the suppression in the hydrocarbon formation via the FTS and the CO₂ formation via forward WGS.

Acknowledgments This work was supported by the Major R&D Projects Program of the Korea Institute of Energy Research (KIER-GP2009-0013). The authors highly appreciate Mr. Geun-Bae Rhim (Hanbat National University, Republic of Korea) for his technical support in the experimental procedure.

References

- Anderson RB (1984) The Fischer–Tropsch synthesis. Academic Press, Inc., New York
- 2. Dry ME (1990) Catal Today 6:183
- Dry ME (2003) In: Horvárth IT (ed) Encyclopedia of catalysis, vol 3. Wiley-Interscience, New Jersey, pp 347–403

- Steynberg AP, Dry ME (2004) Fischer–Tropsch technology. Elsevier, Amsterdam
- Liu Y, Zhang C, Wang Y, Li Y, Hao X, Bai L, Xiang H, Xu Y, Zhong B, Li Y (2008) Fuel Process Technol 89:234
- 6. Yates IC, Satterfield CN (1989) Ind Eng Chem Res 28:9
- 7. Krishnamoorthy S, Li A, Iglesia E (2002) Catal Lett 80:77
- 8. Ning W, Koizumi N, Yamada M (2009) Energy Fuel 23:4696
- Riedel T, Schulz H, Schaub G, Jun KW, Hwang JS, Lee KW (2003) Top Catal 26:41
- Prasad PSS, Bae JW, Jun KW, Lee KW (2008) Catal Surv Asia 12:170
- Gnanamani MK, Shafer WD, Sparks DE, Davis BH (2011) Catal Commun 12:936
- Xu L, Bao S, Houpt DJ, Lambert SH, Davis BH (1997) Catal Today 36:347
- 13. Davis BH (2009) Catal Today 141:25
- ASTM D2887-08 (1989) ASTM International, West Conshohocken
- Pour AN, Shahri SMK, Zamani Y, Zamanian A (2010) J Nat Gas Chem 19:193
- Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) J Catal 272:287
- 17. Puskas I, Hurlbut RS (2003) Catal Today 84:99
- 18. Stenger HG Jr (1985) J Catal 92:426
- 19. Amenomiya Y, Pleizier G (1973) J Catal 28:442
- Wan H, Wu B, Zhang C, Xiang H, Li Y (2008) J Mol Catal A Chem 283:33
- Zhang C, Zhao G, Liu K, Yang Y, Xiang H, Li Y (2010) J Mol Catal A Chem 328:35
- Dry ME, Shingles T, Boshoff LJ, Oosthuizen GJ (1969) J Catal 15:190

